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Suppose by chance you found yourself sitting beside a physicist
when taking a long bus ride. Suppose the physicist was in a talk-
ative mood and told you about some of the things he or she did
for a living. To explain things, your companion would likely doo-
dle on a scrap of paper. Physicists love using doodles to explain
ideas. Einstein was famous for that. You'd see some arrows in
the doodles. The arrows would probably represent the magnitude
(how much) and the direction (which way) of a certain quantity.
The quantity might be the electric current that operates a mini-
computer, or the orbital velocity of a communications satellite,
or the enormous force that lifts an Atlas rocket off the ground.
Whenever the length of an arrow represents the magnitude of a
quantity, and the direction of the arrow represents the direction
of the quantity, the arrow is called a vector.

t&} Vector and Scalar Quantities

Some quantities require both magnitude and direction for a com-
plete description. These are called vector quantities. A force, for
example, has a direction as well as a magnitude. So does a ve-
locity. Force and velocity are the most familiar vector quantities,
but there are a few others treated in later chapters.

Many quantities in physics, such as mass, volume, and time,
can be completely specified by their magnitudes. They do not in-
volve any idea of direction. These are called scalar quantities.
They obey the ordinary laws of addition, subtraction, multipli-
cation, and division. If 3 kg of sand is added to 1 kg of cement,
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the resulting mixture has a mass of 4 kg. If 5 liters of water is
poured from a pail which initially had 8 liters of water in it, the
resulting volume is 3 liters. If a scheduled 1-hour trip runs into
a 15-minute delay, the trip ends up taking 13 hours. In each of
these cases, no direction is involved. We see that 10 kilograms
north, 5 liters east, or 15 minutes south have no meaning. Quan-
tities that involve only magnitude and not direction are scalars.

6.2 | Vector Representation of Force

Fig. 6-1 The resultant of two
forces depends on the direc-
tions of the forces as well as
on their magnitudes,

It is easy to draw a vector that represents a force. The length,
drawn to some suitable scale, indicates the magnitude of the
force. The orientation on the paper and the arrowhead show the
direction.

Figure 6-1 left shows a horse pulling a cart and a man pushing
the cart from behind. The diagram shows vectors for these two
forces acting on the cart. The horse applies twice as much force
on the cart as the man. So the vector for the force supplied by
the horse is twice as long as the one for the force supplied by the
man. The vectors have been drawn to a scale on which 1 cm rep-
resents 100 N. The vectors are pointing in the same direction,
since the two forces are in the same direction.

MAN
HORSEmO N 200 N HORSE  MAN 0O N
200N RESULTANT
300N 100 N

RESULTANT

ey AT A

The man pushes with 100 N and the horse pulls with 200 N.
Since the two forces act in the same direction, the resulting pull
is equal to the sum of the individual pulls and acts in the same
direction. The cart moves as if both forces were replaced by a
single net force of 300 N. This net force is called the resultant of
the two forces. We see it is represented by a vector 3 cm long.

Now suppose that the horse is pushing backwards with a force
of 200 N while the man is pulling forward with a force of 100 N
(Figure 6-1 right). The two forces then act in opposite directions.
The resultant (net force) is equal to the difference between them,
200 N — 100 N = 100 N, and acts in the direction of the larger
force. It is represented by a vector 1 cm long.
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6.3 | Vector Representation of Velocity

Speed is a measure of how fast something is moving; it can be in
any direction. When we take into account the direction of mo-
tion as well as the speed, we are talking about velocity. Velocity,
like force, is a vector quantity.

Consider an airplane flying due north at 100 km/h relative to
the surrounding air. There is a tailwind (wind from behind) that
also moves due north at a velocity of 20 km/h. This example
is represented with vectors in Figure 6-2 left. Here the velocity
vectors are scaled so that 1 em represents 20 km/h. Thus, the
100-km/h velocity of the airplane is shown by the 5-cm-long vec-
tor and the 20-km/h tailwind is shown by the 1-cm-long vector.
You can see (with or without the vectors) that the resultant ve-
locity is going to be 120 kmv/h. Without the tailwind, the airplane
would travel 100 km in one hour relative to the ground below.
With the tailwind, it would travel 120 km in one hour.

Suppose, instead, that the wind is a headwind (wind head-
on), so that the airplane flies into the wind rather than with the
wind. Now the velocity vectors are in opposite directions (Fig-
ure 6-2 right). Their resultant is 100 km/h — 20 km/h = 80 km/h.
Flying against a 20-km/h headwind, the airplane would travel
only 80 km relative to the ground in one hour.

» Questions

I. In the cart, horse, and man example shown in Figure 6-1
left, suppose the man’s kid brother assists by also push-
ing forward on the cart, but with a lorce of 30 N. What
would then be the resultant force the men and horse exert
on the cart?

L)

. Suppose in the previous guestion that all parties exert
forces as stated in a headwind of 10 kidh. What would
then be the resultart force the raen and horse exert on
the cart?

> Answers

(A reminder: are you reading this before you have thought about the questions
and come up with your own answers? Finding, seeing, and remembering the an-
swer is not the way to do physics. Learning to think about the ideas of physics is
more important. Think first, then look! It will make a difference.)

1. The resultant will be the sum of the applied forces: 200 N + 100 N + 50 N =
350 N.

2. The resultant force is the same, 350 N. Be careful here. Adding apples to a pile
of oranges doesn’t increase the number of oranges. Similarly, we can't add or
subtract velocity from force.

|20 kmg,
A ﬂl 20 oy
100 <%, loo'%x iOk%
h

I eS|

S

20 knr};r

WITH THE AGAINST
WIND THE WIND

Fig. 6-2 The velocity of

an airplane relative to the
ground depends on its ve-
locity relative to the air and
on the wind velocity.
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Geometric Addition of Vectors

Consider the forces exerted by the horses towing the barge in
Figure 6-3 left. When vectors act at an angle to each other, a sim-
ple geometrical technique can be used to find the magnitude
and direction of the resultant. The two vectors to be added are
drawn with their tails touching (see Figure 6-3 right). A projec-
tion of each vector is drawn (dashed lines) starting at the head of
the other vector. The four-sided shape that results is known as
a parallelogram because the opposite sides are parallel and of
equal length.* The resultant of the two forces is the diagonal of
the parallelogram between the points where the tails meet and
the dashed lines meet.**

FI WD . [—'l

Fig. 6-3 The barge moves under the action of the resultant of the two forces F,
and F,, The direction of the resultant is along the diagonal of the parallelogram
constructed with sides F, and F,.

We can see that the barge will not move in the direction of
either of the forces exerted by the horses, but rather in the direc-
tion of their resultant. The resultant is found by using the fol-
lowing rule for the addition of vectors:

The resultant of two vectors may be represented by
the diagonal of a parallelogram constructed with the
two vectors as sides.

You can apply this rule to other pairs of forces that act on a
common point. Figure 6-4 shows forces of 3 N to the north and

* When the angles in a parallelogram are 90, it becomes a rectangle; if the

four sides of the rectangle are the same length, it is a square.

L

Since vector arrows only represent forces, it doesn’t matter where you
place them on a drawing so long as their directions and lengths are correct.
Another way to find their resultant is to rearrange the arrows in any order so
they are united tail to tip. A new vector, drawn from the tail of the first vector
to the tip of the last vector, represents the resultant or net force.



6.4 Geometric Addition of Vectors

4 X to the east. Using a scale of 1 N:1 cm, you construct a paral-
lelogram, using the vectors as sides. Since the vectors are at right
angles, your parallelogram is simply a rectangle. If you draw a
diagonal from the tails of the vector pair, you have the resultant.
Measure the length of the diagonal and refer to the scale, and
you have the magnitude of the resultant. The angle can be found
with a protractor.

34 <7 S 3F

Fig. 6-4 The 3-N and 4-N forces add to produce a force of 5 N.

» Exercises

1, By the parallelogram method construct the resultants of
the 3-N and 4-N forces tepresented by the vectors shown,
They are drawn 6 a scale on which D'em:1 N. Measure
vour restiltants with a ruler and compare them to the
correct answers given al the bottom of the page.

X

LY

= \ =,
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2. What are the mmimum and maximuni resulinants possi-
ble for a 3-N and a 4-N force acting on the same object?

With the technique of vector addition you can correct for the
effect of a crosswind on the velocity of an airplane. Consider a
slow-moving airplane that flies north at 80 km/h and is caught
in a strong crosswind of 60 km/h blowing east. Figure 6-5 shows
vectors for the airplane velocity and wind velocity. The scale

» Answers
1. Left: 6 N; right: 4 N.

2. The minimum resultant occurs when the forces oppose eachother: 4 N -3 N =
1 N.The maximum resultant occurs when they are in the same direction: 4 N +
3 N = 7 N. (At angles to each other, 3 N and 4 N can combine to range be-
tween 1 N and 7 N)

X e
37)%
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Fig. 6-6 The diagonal of a
square is V2 the length of one
of its sides.

6 Vectors

here is 1 cm:20 km/h. The diagonal of the constructed paral-
lelogram (rectangle in this case) measures 5 cm, which repre-
sents 100 km/h. So the airplane moves at 100 kimn/h relative to
the ground, in a northeasterly direction.*

goxm 4 ! 100 k4,
:
I
‘\ [

RESULTANT

!
1

(SCALE : 1cm=20"%) ! 60"

Fig. 6-5 An 80-km/h airplane flying in a 60-km/h crosswind has a resultant
speed of 100 km/h relative to the ground.

There is a special case of the parallelogram that often occurs.
When two vectors that are equal in magnitude and at right an-
gles to one another are to be added, the parallelogram becomes
a square. Since for any square the length of a diagonal is V'2, or
1.414, times one of the sides, the resultant is V2 times one of the
vectors. For example, the resultant of two equal vectors of mag-
nitude 100 acting at right angles to each other is 141.4.

L().") Equilibrium

The method of combining vectors by the parallelogram rule is an
expérimental fact. It can be shown to be correct by considering
an example that is common and quite surprising the first time—
the case of being able to hang safely from a vertical clothesline
but not being able to do so when the line is strung horizontally.
Invariably, it breaks (Figure 6-7).

I
*  Whenever the vectors are at right angles to each other, their resultant can

be found by the Pythagorean Theorem, a well-known tool of ge&metry. It states
that the square of the hypotenuse of a right-angle triangle is equal to the sum
of the squares of the other two sides. Note that two right triangles are present
in the parallelogram (rectangle in this case) in Figure 6-5. From either one of
these triangles we get:

(60 km/h)y + (80 km/h)?
3600 (km/h)? + 6400 (km/h)?
10 000 (km/h)*

The square root of 10 000 (km/h)? is 100 km/h, as expected.

resultant®

B



6.5 Equilibrium

We can understand this with spring scales that are used to
measure weight. Consider a block that weighs 10 N, about the
weight of ten apples. If we suspend it from a single scale, as in
Figure 6-8 left, the reading will be its weight, 10 N. Did you know
that if you stand with your weight evenly divided on two bath-
room scales, each scale will record half your weight? This is be-
cause the springs in the scales are compressed and, in effect,
push up on you just as hard as gravity pulls down on you. If two
scales support your weight, each will have half the job. The same
is true if you hang by a pair of scales. In this case the springs that
support you are stretched, and each scale has half the job and
reads half your weight. So if we suspend the 10-N block from a
pair of vertical scales (Figure 6-8 right), each scale will read 5 N.
The scales pull up with a resultant force that equals the weight
of the block. The diagram shows a pair of 5-N vectors that have a
10-N resultant that exactly opposes the 10-N weight vector. The
net force on the block is zero, and the block hangs at rest; we say
it is in equilibrium. The key idea is this: if a 10-N block is to hang
in equilibrium, the resultant of the forces supplied by the pair of
springs must equal 10 N. For vertical orientation this is .
5N + 5 N = 10 N. This is all Chapter 4 stuff. &~ %ﬁ!‘Uﬁs?

Now let's look at a non-vertical arrangement. In Figure 6-9
left, we see that when the supporting spring scales hang at an
angle to support the block, the springs are stretched more, as in-
dicated by the greater reading. At 60° from the vertical, the
readings are 10 N each—double what they were when the scales
were hanging vertically! Can you see the explanation? The result-
ant of the two scale readings must be 10 N upward to balance
the downward weight of the block. A pair of 5-N vectors will
produce a 10-N resultant only if they are parallel and acting in
the same direction. If the vectors have different directions, then
each vector must be greater than 5 N to produce a resultant of
10 N. For equilibrium, the diagona! of the parallelogram formed
by the vector sides, whatever the angle between them, must re-
main the same. Why? Because the diagonal must correspond to
10 N, exactly equal and opposite to the 10 N weight of the block.

R
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Fig.6-7 You can safely hang
from a piece of clothesline
when it hangs vertically, but
you'll break it if you attempt
to make it support your
weight when it is strung
horizontally.

10

Fig.6-8 (Left) When a 10-N
block hangs vertically from a
single spring scale, the scale
pulls upward with a force of
10 N. (Right) When it hangs
vertically from two spring
scales, each scale pulls up-
ward with a force of half the
weight, or 3 N.
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Fig. 6-9 As the angle be-
tween the spring scales in-
creases, the scale readings
increase so that the resultant
{dashed-line vector) remains
at 10 N upward, which is re-
quired to support the 10-N
block.

6 Vectors

In Figure 6-9 right, where the angle from the vertical has been
increased to 75.5°, each spring must pull with 20 N to produce
the required 10-N resultant. As the angle between the scales is
increased, the scale readings increase. Can you see that as the
angle between the sides of the parallelogram increases, the mag-
nitude of the sides must increase if the diagonal is to remain the
same? If you understand this, you understand why you can't
be supported by a horizontal clothesline without producing a
stretching force that is considerably greater than your weight.
The parallelogram rule turns out to be quite interesting.

e e - pa— —

» Questions
1. If the kids un the swings are of equal weight, which swing

is more likely to break? -----\ . |
:

| 2. Two pictures of equal weight are hung in a gallery as
shown. In which of the two arrangements is the wire

more likely to break? .
q
A
i
|

> Answers
1. The tension is greater in the ropes that hang at an angle, so they are more
likely to break than the vertical ropes.

2. The tension is greater in the picture to the left, because the supporting rope
makes a greater angle with respect to the vertical than the picture on the right.
This is similar to the stretched clothesline.
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6.6 | Components of Vectors

Two vectors acting on the same object may be replaced by a
single vector (the resultant) that produces the same effect upon
the object as the combined effects of the given vectors. The re-
verse is also true: any single vector may be regarded as the re-
sultant of two vectors, each of which acts on the body in some
direction other than that of the given vector. These two vectors
are known as the components of the given vector that they re-
place. The process of determining the components of a vector is
called resolution.

A man pushing a lawnmower applies a force that pushes the
machine forward and also against the ground. In Figure 6-10,
vector F represents the force applied by the man. We can sepa-
rate this force into two components. Vector Y is the vertical com-
ponent, which is the downward push against the ground. Vector
X is the horizontal component, which is the forward force that
moves the lawnmower.

We can find the magnitude of these components by drawing a
rectangle with F as the diagonal. Since X and Y are the sides of a
parallelogram, vector F is the resultant of the vectors X and Y.
Hence the two components X and Y acting together are equiva-
lent to the force F. That is, the motion of the lawnmower is the
same whether we assume that the man exerts two forces, com-
ponents X and ¥, or only one force, F.

The rule for finding the vertical and horizontal components of
any vector is relatively simple, and is illustrated in Figure 6-11.
A vector V is drawn in the proper direction to represent the force,
velocity, or whatever vector is in question (Figure 6-11 left). Then
vertical and horizontal lines are drawn at the tail of the vector
(Figure 6-11 right). A rectangle is drawn that encloses the vector
V in such a way that V is a diagonal and the sides of the rec-
tangle are the desired components. We see that the components
of the vector V are then represented in direction and magnitude
by the vectors X and Y.

Fig. 6-11 The vector V has component vectors X and ¥

Fig. 6-10 The force F ap-
plied to the lawnmower may
be resolved into a horizontal
component, X, and a vertical
component, Y.
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Any vector can be represented by a pair of components that
are at right angles to each other. This is neatly illustrated in the
explanation of a sailboat sailing against the wind. (See Appen-
dix C, Vector Applications, at the back of this book.)

> Exervise

With a ruler, draw the horizontal and vertical compo-
nents of the two vectors showii. Measur the comiponents
and coipaie your findings witk the answers given at the
bottom of the page.

Components of Weight

We all know that a ball will roll faster down a steep hill than a
hill with a small slope. The steeper the hill is, the greater the ac-
celeration of the ball. We can understand why this is so with vec-
tor components. The force of gravity that acts on things gives
them weight, which we represent as vector W. The force vector
W acts only straight down—toward the center of the earth—but
components of W may act in any direction. It is most often use-
ful to consider components that are at right angles to each other.

In Figure 6-12 we see W broken up into components A and B,
where A is parallel to the surface and B is perpendicular to the
surface. It is component A that makes the ball move. Component
B presses the ball against the surface. Pictures are better than
words, so study the figure and see how the magnitudes of the
components vary for different slopes.

> Answer
Left vector: the horizontal component is 3 cm; the vertical component is4 cm.
Right vector: the horizontal component is 6 cm; the vertical component is 4 cm.




6.8 Projectile Motion
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Fig. 6-12 The weight of the ball is represented by vector W, which has perpen-
dicular components A and B. Vector A serves to change the speed of the ball,
while vector B presses it against the surface. Note how the magnitudes of A and
B vary from zero to W.

Can you see that only when the slope is zero—when the sur-
face is horizontal—is component A equal to zero? That's why
the speed of the ball does not change on a horizontal surface.
Note another thing when the surface is horizontal. Component
B is equal to W; the ball presses against the surface with the most
force. But when the slope is 90°, component B becomes zero and
A equals W, so the ball has its maximum acceleration.

P Question

At what angle will compongits A4 and 8B in Figure 6-12
have equal magnitudes? At what angle will 4 equal W2 A
what angle will A be greater in magnitde than W2

L(),é% Projectile Motion

Chapter 2 discussed the vector quantities velocity and accelera-
tion. Since only horizontal and vertical motion was considered,
we did not need to know about vector addition or the techniques
of vector resolution. But for objects projected at angles other
than straight up or siraight down, we do.

A projectile is any object that is projected by some means and
continues in motion by its own inertia. A cannonball shot from
a cannon, a stone thrown into the air, or a ball that rolls off
the edge of the table are all projectiles. These projectiles follow
curved paths that at first thought seem rather complicated. How-
ever, these paths are surprisingly simple when we look at the
horizontal and vertical components of motion separately.

» Answer
Components A and B have equal magnitudes at 45°; A = W at 90% A cannot
have a greater magnitude than W at any angle.
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The horizontal component of motion for a projectile is no
more complex than the horizontal motion of a bowling ball roll-
ing freely along a level bowling alley. If the retarding effect of
friction can be ignored, the bowling ball moves at constant ve-
locity. It covers equal distances in equal intervals of time. It rolls
of its own inertia, with no component of force acting in its direc-
tion of motion. It rolls without accelerating. The horizontal part
of a projectile’s motion is just like the bowling ball's motion
along the alley (Figure 6-13 left).

ES

Fig. 6-13 (Left) Roll a ball along a level surface, and its velocity is constant be-
cause no component of gravitational force acts horizontally. (Right) Drop it, and
it accelerates downward and covers greater vertical distances each second.

The vertical component of motion for a projectile following a
curved path is just like the motion described in Chapter 2 for a
freely-falling object. Like a ball dropped in mid-air, the projec-
tile moves in the direction of earth gravity and accelerates down-
ward (Figure 6-13 right). The increase in speed in the vertical
direction causes successively greater distances to be covered in
each successive equal-time interval.

Interestingly enough, the horizontal component of motion for
a projectile is completely independent of the vertical component
of motion. Each acts independently of the other. Their combined
effects produce the variety of curved paths that projectiles follow.

The multiple-flash exposure of Figure 6-14 shows equally-
timed successive positions for a ball rolled off a horizontal table.
Investigate the photo carefully, for there's a lot of good physics
there. The curved path of the ball is best analyzed by consid-
ering the horizontal and vertical components of motion sepa-
rately. There are two important things to notice. The first is that
the ball’s horizontal component of motion doesn’t change as the
falling ball moves sideways. The ball travels the same horizon-
tal distance in the equal times between each flash. That's be-
cause there is no component of gravitational force acting hori-
zontally. Gravity acts only downward, so the only acceleration of
the ball is downward. The second thing to note from the photo is
that the vertical positions become farther apart with time. The
distances traveled vertically are the same as if the ball were sim-
ply dropped. It is interesting to note that the downward motion
of the ball is the same as that of free fall.
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Fig. 6-14 A multiple-flash photograph of a ball rolling off a horizontal table.
Notice that in equal times it travels equal horizontal distances but increasingly
greater distances vertically. Do you know why?.

The path traced by a projectile that accelerates only in the
vertical direction while moving at a constant horizontal velocity
is called a parabola. When air resistance can be neglected—usu-
ally for slow-moving projectiles or ones very heavy compared to
the forces of air resistance—the curved paths are parabolic.

I — — A

B Question
At the instant a horizontally held rille is fired over a level
range, a bullet held a1 the side of the rifle is released and
drops to the ground. Which bullet—the one fired down-
Ea_nge ot the one dropped from rest—strikes the ground |
rst? |

L

> Answer

*Both bullets fall the same vertical distance with the same acceleration g due
to gravity and therefore strike the ground at the same time. Can yon see that this
is consistent with our analysis of Figure 6-14? We can reason this another way by
asking which bullet would strike the ground first if the rifle were pointed at an
upward angle. In this case, the bullet that is simply dropped would hit the ground
first. Now consider the case where the rifle is pointed downward. The fired bullet
hits first. So upward, the dropped bullet hits first; downward, the fired bullet
hits first. There must be some angle at which there is a dead heat—where both
hit at the same time. Can you see it would be when the rifle is neither pointing
upward nor downward-—when it is horizontz] ?

ekl et s bl
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Upwardly Moving Projectiles

Fig. 6-15 With no gravity the
projectile would follow the
straight-line path (dashed
line). But because of gravity,
it falls beneath this line the
same vertical distance it
would fall if released from
rest. Compare the distances
fallen with Table 2-3 in Chap-
ter 2. (With g = 9.8 m/s?, these
distances are more accurately
49 m, 19.6 m, and 44.1 m.)

Consider a cannonball shot at an upward angle. Pretend for a
moment that there is no gravity; then according to the law of
inertia, the cannonball will follow the straight-line path shown
by the dashed line in Figure 6-15. But there is gravity, so this
doesn’t happen. What really happens is that the cannonball con-
tinually falls beneath this imaginary line until it finally strikes
the ground. Get this: The vertical distance it falls beneath any
point on the dashed line is the same vertical distance it would
fall if it were dropped from restand had been falling for the same
amount of time. This distance, as introduced in Chapter 2, is
given by d = 3gt*, where t is the elapsed time.
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We can put this another way: Shoot a projectile skyward at
some angle and pretend there is no gravity. After so many sec-
onds ¢, it should be at a certain point along a straight-line path.
But because of gravity, it isn't. Where is it? The answer is, it’s di-
rectly below this point. How far below? The answer in meters is
5¢% (or more accurately, 4.9¢). Isn't that neat?

Note another thing from Figure 6-15. The cannonball moves
equal horizontal distances in equal time intervals. That's be-
cause no acceleration takes place horizontally. The only acceler-
ation is vertically, in the direction of earth gravity. The vertical
distance it falls below the imaginary straight-line path during
equal time intervals continually increases with time.
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Figure 6-16 shows vectors representing both horizontal and
vertical components of velocity for a projectile following a para-
bolic path. Notice that the horizontal component is everywhere
the same, and only the vertical component changes. Note also
that the actual velocity is represented by the vector that forms
the diagonal of the rectangle formed by the vector components.
At the top of the path the vertical component vanishes to zero, so
the actual velocity there is the horizontal component of velocity
at all other points. Everywhere else the magnitude of velocity is
greater (just as the diagonal of a rectangle is greater than either
of its sides).

Flg. 6-16 The velocity of a projectile at various points along its path. Note that
the vertical component changes and the horizontal component is the same
everywhere.

Figure 6-17 shows the path traced by a projectile with the
same launching speed at a steeper angle. Notice that the initial
velocity vector has a greater vertical component than when the
projection angle is less. This greater component results in a
higher path. But the horizontal component is less so the range
is less.

Fig. 6-17 Path for a steeper projection angle.
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Fig. 6-18 Ranges of a projec-
tile shot at the same speed at
different projection angles.

Fig. 6-19 Maximum range is
attained when the ball is bat-
ted at an angle of nearly 45°.
(In cases where the weight of
the projectile is comparable
to the applied force, as when
a heavy javelin is thrown, the
applied force does not pro-
duce the same speed for dif-
ferent projection angles, and
maximum range occurs for
angles quite a bit less than
45°)

6 Vectors

Figure 6-18 shows the paths of several projectiles all having
the same initial speed but different projection angles. The figure
neglects the effects of air resistance, so the paths are all parab-
olas. Notice that these projectiles reach different altitudes, or
heights above the ground. They also have different horizontal
ranges, or distances traveled horizontally.
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The remarkable thing to note from Figure 6-18 is that the
same range is obtained from two different projection angles—
angles that add up to 90 degrees! An object thrown into the air
at an angle of 60 degrees, for example, will have the same range
as if it were thrown at the same speed at an angle of 30 degrees.
For the smaller angle, of course, the object remains in the air for
a shorter time.
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We have emphasized the special case of projectile motion
without air resistance. When there is air resistance, the range of
a projectile is somewhat shorter and is not a true parabola (Fig-

ure 6-20).

» Questions

1. A projectile is shot at an angle into the air. If air resis
tance Is negligible, what is its downward acceleration?
lis horizontal acceleration?

2. At what part of its path does a projeciile have minimum
speed?

b —— —

If air resistance is small enough to be negligible, a projectile
will rise to its maximum height in the same time it takes to fall
from that height to the ground. This is because its deceleration
by gravity while going up is the same as its acceleration by grav-
ity while coming down. The speed it loses while going up is there-
fore the same as the speed it gains while coming down. So the
projectile arrives at the ground with the same speed it had when
it was projected from the ground.

If an object is projected fast enough so that its curvature
matches the curvature of the earth, and it is above the atmos-
phere so that air resistance does not affect its motion, it will fall
all the way around the earth and be an earth satellite. This inter-
esting topic is treated in Chapter 12.

» Answers
1. Its downward acceleration is g because the force of gravity is downward; its
horizontal acceleration is zero because no horizontal forces act on it.

2. The speed of a projectile is minimum at the top of its path. If it is launched
vertically, its speed at the top is zero. If it is projected at an angle, the vertical
component of velocity is zero at the top, leaving only the horizontal compo-
nent. So the speed at the top is equal to the horizontal component of the pro-
jectile's velocity at any point. Isn't tha P
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Fig. 6-20 In the presence of
air resistance, the path of a
high-speed projectile falls
short of a parabola (dashed
curve).
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Fig. 6-21 Without air resis-
tance, speed lost while going
up equals speed gained while
coming down; time up equals
time down.
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6 Vectors

6 | Chapter Review

Concept Summary

Vector quantities have both magnitude and
direction.

« A vector is an arrow whose length repre-
sents the magnitude of a vector quantity
and whose direction represents the direc-
tion of the quantity.

The resultant of several forces or several veloci-
ties can be determined from a vector diagram
drawn to scale.
« When something is in equilibrium, the re-
sultant of all the forces supporting it must
exactly oppose its weight.

Any single vector can be replaced by two compo-
nents that add to form the original vector.

« It is often convenient to study the horizon-
tal and vertical components of forces or
velocities.

» When gravity is the only force acting on a
projectile, the horizontal component of its
velocity does not change.

Important Terms

component (6.6)
equilibrium (6.5)
projectile (6.8)
resolution (6.6)

resultant {6.2)

scalar quantity (6.1)
vector {6.1)

vector quantity (6.1)

Review Questions

1. How doe= a vector differ from a scalar? (6.1)

2. If a vector that is 1 cm long represents a
force of 5 N, how many newtons does a vec-
tor 2 cm long, drawn to the same scale, rep-
resent? (6.2)

10.

11.

12.

. a. What is the resultant of a pair of forces,

100 N upward and 75 N downward?
b. What is their resultant if they both act
downward? (6.2)

. Why is speed classified as a scalar, and ve-

locity as a vector? (6.3)

. What is the resultant velocity of an airplane

that normally flies at 200 km/h if it experi-
ences a 50-km/h tailwind? A 50-km/h head-
wind? (6.3)

. What is a parallelogram? (6.4)

. When a parallelogram is constructed in or-

der to add forces, what represents the result-
ant of the forces? (6.4)

. What is the magnitude of the resultant of

two vectors of magnitudes 4 and 3 that are
at right angles to each other? (6.4)

. 'What is the magnitude of the resultant of a

pair of 100-N vectors that are at right angles
to each other? (6.4)

The tension in a clothesline carrying aload of
wash is appreciably greater when the clothes-
line is strung horizontally than when it is
strung vertically. Why? (6.5)

What is the net force, or equivalently, the.
resultant force that acts on an object when it
is in equilibrium? (6.5)

Compared to your weight, what is the stretch-
ing force in your arm when you let yourself
hang motionless by one arm? By both arms
vertically? Is this force greater or less if you
hang with your hands wide apart? Why?
{6.5)



13.

14,

15.

is.

17.

18.

19,

20,

21,

Chapter Review

Distinguish between the method of geomet-
ric addition of vectors and vector resolution.
(6.4, 6.6)

What are the magnitudes of the horizontal
and vertical components of a vector that is

100 units long, and oriented at 45°? (6.6)

The weight of a ball rolling down an inclined

plane can be broken into two vector compo--

nents: one acting parallel to the plane, and

the other acting perpendicular to the plane.

a. At what slope angle are these two com-
ponents equal?

b. At what slope angle is the component
parallel to the plane equal to zero?

¢. At what slope angle is the component
parallel to the plane equal to the weight?
(6.7)

Why does a bowling ball move without accel-
eration when it rolls along a bowling alley?
6.8

In the absence of air resistance, why does
the horizontal component of velocity for a
projectile remain constant, and why does
only the vertical component change? (6.8)

How does the downward component of the
motion of a projectile compare to the mo-
tion of free fall? (6.8)

At the instant a ball is thrown horizontally
over a level range, a ball held at the side of
the first is released and drops to the ground.
If air resistance can be neglected, which
ball—the one thrown or the one dropped
from rest—strikes the ground first? (6.8)

a. How far below an initial straight-line
path will a projectile fall in one second?

b. Does your answer depend on the angle of
launch or on the initial speed of the pro-
jectile? Defend your answer. (6.9)

‘a. A projectile is fired straight upward at

100 m/s. How fast is it moving at the in-
stant it reaches the top of its trajectory?

b. What is the answer if the projectile is
fired upward at 45° instead? (6.9)

22,

23.
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At what angle should a slingshot be oriented
for maximum altitude? For maximum hori-
zontal range? (6.9)

Neglecting air resistance, if you throw a ball
straight upward with a speed of 20 m/s, how
fast will it be moving when you catch it?
(6.9}

24, a. Neglecting air resistance, if you throw

a baseball at 20 m/s to your friend who
is on first base, will the catching speed
be greater than, equal to, or less than
20 m/s?

b. How about if air resistance is a [actor?
(6.9)

Activity

Place a coin at the edge of a smooth table so that
it overhangs slightly. Then place a second coin
on the table top some distance from the over-
hanging coin. Set the second coin sliding across
the table (such as by snapping it with your fin-
ger) so that it strikes the overhanging coin and
both coins fall to the floor below. Which—if
either—hits the floor first? Does your answer
depend on the speed of the sliding coin?

Think and Explain

1. a. What is the maximum possible resultant

of a pair of vectors, one of magnitude 5
and the other of magnitude 4?
b. What is the minimum possible resultant?

2. A boat is rowed at 8 km/h directly across a

river that flows at 6 km/h (Figure A).

a. What is the resultant speed of the boat?

b. How fast and in what direction can the
boat be rowed to reach a destination di-
rectly across the river?
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3. By whatever means, find the direction of the

airplane in Figure 6-5.

. In which position is the tension the least in
the arms of the weightlifter shown in Fig-
ure B? The most?

. Why do electric power lines sometimes

break in winter when a small weight of ice
forms on them? .

. Why cannot the strong man in Figure C pull

hard enough to make the chain straight?

7.

10.

6 Vectors

Why are the main supporting cables of sus-
pension bridges designed to sag the way
they do (Figure D)?

fl I ——satl)|

Fig. D

. The boy on the tower (Figure E) throws a

ball 20 m downrange, as shown. What is his
pitching speed?

{-—-ZOM ———I

Fig. E

. Why does a ball rolling down an incline

undergo more acceleration the steeper the
incline?

Why is less force required to push a barrel
up a sloping ramp (Figure F) than to lift it
vertically?

Fig. F



